Mass effects and internal space geometry in triatomic reaction dynamics

نویسندگان

  • Tomohiro Yanao
  • Wang S. Koon
  • Jerrold E. Marsden
چکیده

The effect of the distribution of mass in triatomic reaction dynamics is analyzed using the geometry of the associated internal space. Atomic masses are appropriately incorporated into internal coordinates as well as the associated non-Euclidean internal space metric tensor after a separation of the rotational degrees of freedom. Because of the non-Euclidean nature of the metric in the internal space, terms such as connection coefficients arise in the internal equations of motion, which act as velocity-dependent forces in a coordinate chart. By statistically averaging these terms, an effective force field is deduced, which accounts for the statistical tendency of geodesics in the internal space. This force field is shown to play a crucial role in determining mass-related branching ratios of isomerization and dissociation dynamics of a triatomic molecule. The methodology presented can be useful for qualitatively predicting branching ratios in general triatomic reactions, and may be applied to the study of isotope effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass-Related Dynamical Barriers in Triatomic Reactions

A methodology is given to determine the effect of different mass distributions for triatomic reactions using the geometry of shape space. Atomic masses are incorporated into the non-Euclidean shape space metric after the separation of rotations. Using the equations of motion in this non-Euclidean shape space, an averaged field of velocity-dependent fictitious forces is determined. This force fi...

متن کامل

Kinematic effects associated with molecular frames in structural isomerization dynamics of clusters.

Kinematic effects associated with movements of molecular frames, which specify instantaneous orientation of molecules, is investigated in structural isomerization dynamics of a triatomic cluster whose total angular momentum is zero. The principal-axis frame is employed to introduce the so-called principal-axis hyperspherical coordinates, with which the mechanism of structural isomerization dyna...

متن کامل

APPLICATION OF THE SINGULAR BOUNDARY VALUE PROBLEM FOR INVESTIGATION OF PISTON DYNAMICS UNDER POLYTROPIC EXPANSION PROCESS

In this paper a mathematical simulation of a simplified internal combustion engine is presented. To contribute engine kinematics and its geometry, simple relations are derived for constrained motions. The equation of motion for the piston forms a singular boundary value problem. The uniqueness of the solution was studied in the Banach space. For solving governing equations an iterative numerica...

متن کامل

Symplectic reduction , geometric phase , and internal dynamics in three - body molecular dynamics

Symplectic reduction of the planar dynamics of a non-collinear triatomic molecule leads eventually to an internal phase space with symplectic dynamics in the bond lengths and bond angle. For the overall and internal angular velocities, the dynamic and geometric phases describe conditions for the separation of energies and separation of dynamics. @ 1997 Published by Elsevier Science B.V.

متن کامل

Gyration-radius dynamics in structural transitions of atomic clusters.

This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005